Skip to main content

COVID19 Analysis using Power BI Desktop


Analysis of the data before running into predictions is very important. Understand a few rows and a few columns is very nominal task and we can easily examine the data. However, with a little larger data, suppose 10,000 rows with 50 columns, we really need to do analysis of the data so that we can come to know which factors are going to affect our prediction.

Data Analysis with Python is a bit tedious task as we have to prepare the data i.e. cleaning, pre-processing and normalization. We use Seaborn and Matplotlib for our data visualization. But before plotting the graphs, we need to know which columns are inter-related. For that, we need a co-relation matrix which we can create using Python. However, PPS matrix is more better than co-relation matrix.

Fig1: Co-relation Matrix of Covid19 dataset

Fig2: PPS Matrix of Covid19 dataset

It is always a tedious task when we code for Data Analysis. So, we have certain tools available in the market for it like Power BI, Tableau, etc.

I have done COVID19 Analysis with the data which you can download from the link given below. 

Link for Dataset: COVID19 Dataset

And here's the report of my work.

PowerBIReport: MuskaanPirani_report

Thanks for reading!


Comments

Post a Comment

Popular posts from this blog

Types of Machine Learning problems

In the previous blog, we had discussed brief about What is Machine Learning? In this blog, we are going to learn about the types of ML.  ML is broadly classified into four types: Supervised Learning Unsupervised Learning Semi-supervised Learning Reinforcement Learning 1. Supervised Learning Supervised learning is where there are input variables, say X and there are corresponding output variables, say Y. We use a particular algorithm to map a function from input(X) to output(Y). Mathematically, Y=f(X). Majority of the ML models use this type of learning to feed itself and learn. The goal of supervised learning is to approximate the said function so well that whenever we enter any new input, it's output is accurately predicted. Here, we can say that there is a teacher who guides the model if it generates incorrect results and hence, the machine will keep on learning until it performs to desired results. Supervised Learning can be further classified into: Classification : He...

Statistics in Data Science

Introduction Statistics is one of the popularly regarded disciplines this is particularly centered on records collection, records organization, records analysis, records interpretation and records visualization. Earlier, facts become practiced through statisticians, economists, enterprise proprietors to calculate and constitute applicable records of their field. Nowadays, facts have taken a pivotal position in diverse fields like records technology, system learning, records analyst position, enterprise intelligence analyst position, pc technology position, and plenty more. Statistics is a type of mathematical analysis that uses quantified models and representations to analyze a set of experimental data or real-world research. The fundamental benefit of statistics is that information is provided in an easy-to-understand style. Statistical & Non-Statistical Analysis Statistical analysis is used to better understand a wider population by analyzing data from a sample. Statistical analy...

What is Machine Learning?

Arthur Samuel, firstly coined the term "Machine Learning". He defined the term as, "Field of study that gives computers the capability to learn without being explicitly programmed." Explaining in layman terms, Machine learning means improving the process of learning for computers which is based on it's experiences to do a certain task without further guidance through programs. In other words, we can say that machine learns through initial program and feeds itself the data which obtained from the experiences while executing a particular task. Let's take an example to understand this. A father and a baby went to a park to make the baby learn how to walk. Initially, the father hold the hands of his baby so that the baby can walk without tripping. As the baby can now stand on it's own legs, the father did not hold hands of the baby, thus the baby kept going on and  tripped as stone hit the toes. The baby stood up and learned not to walk over stones. The next...